High Grade Epi Specification

Items	Specification	Tolerance	Typical	Remark
Diameter	6"(150mm)	-	-	
Poly-type	4H	-	-	
Surface	(0001)Si-face	-	-	
Off-orientation	4deg-off	-	-	
Conductivity	n-type	-	-	
Dopant	Nitrogen	-	-	
Carrier Concentration	1E15-3E16	±12%~±15%	±8%	All Meas, points
Epi Thickness	5um~30um	±8%~±10%	±6%	All Meas, points
PDD	≦2.0/cm ²	-	0.3/cm ²	(THK5um~30um)
BPD 2mm yield	>92%	-	98%	Up to request

Notes

- 1) Other dimensional specifications are similar to definition in SEMI M12
- 2) Measurement points for Thickness and Carrier Concentration

15mm pitch 9pts (EE = 4mm) Thickness by FT-IR Carrier Concentration by Hg-CV

3) 8in; to be discussed

2nd Generation High Grade Epi

6inch n-type Epi (10um thickness)

<u>Contact</u>

Hirotsugu Horinouchi Hiroaki Nakamura Keita Hashimoto |堀ノ内 浩嗣 |中村 浩章 |橋本 啓多

Device Solutions Division Marketing Department (SiC epitaxial wafer for power devices)

Resonac Corporation 1505, Shimo Kagemori, Chichibu, Saitama 369-1893 Japan Tel: +81-494-23-6127, Fax: +81-494-25-0830 Mail: sic_sales@resonac.com

Highly N-doped Epi layer (HNDE)

Restraint of BPD expansion by remaining minority carrier due to shorter carrier life time using highly HNDE. * Tawara, et al Mater. Sci Forum 897 (2017) 419.

V_f shift of PiN diodes N doping uniformity on 150mm wafer As function of BPD density in substrate 7 1.0E+20 N doping concentration (cm⁻³) with HNDE 6 without HNDE 5 4 **ΔVF/VF (%)** 1.0E+19 3 2 1 0 1.0E+18 1000 0 200 400 600 800 1200 0

BPD density in substrate (cm⁻²)

SiC epitaxial wafer

RESONAC

Thick epi performance

n-type ~280um thickness

Only one triangle defect can be detected by visual

on 4in wafer

PL measurement

No BPD propagated from the substrate

*) FTIR thickness evaluation can not be applied at very out side area (\geq 40mm)

Thicker layer sample shows good distribution on layer thickness and carrier concentration. Surface defect and BPD performance are also improved significantly even with 280um of thickness.

Resonac Corporation