

エネルギー事業のグローバル成長を支える 新製品開発

New Product Development to Support Global Growth of Energy Storage Business

椎木 正敏 Masatoshi Shiiki エネルギー事業本部 エネルギー事業戦略部

箕浦 敏 Satoshi Minoura 開発統括本部 電池技術開発センタ

地球温暖化が深刻化していく中,2015年12月の気候変動枠組条約第21回締約国会議(COP21)にてパリ協定が採択された。 世界の各国が温暖化対策を力強く推進していくためには、化石エネルギーの利用比率を最小化したエネルギー需給見通し(エ ネルギーミックス)をめざすエネルギー革新戦略の策定が重要であり、徹底した省エネルギーの実行、温室効果ガス排出のな い風力、太陽光などの再生可能エネルギーの活用最大化、発電および輸送分野における新たなエネルギーシステムの構築が必 須となる。この具体的な解決策として、蓄電池を活用した新たなエネルギーシステムの開発・実用化に期待が寄せられている。 蓄電デバイスは、電気エネルギーの貯蔵、空間および時間の移動を実現する最適のデバイスである。当社は、蓄電池および蓄 電システムに関する長年の製品開発を通し、多くの共通基盤技術、知見を蓄積してきた。電力および自動車などの基幹産業に おける先進システムの変革が進行していくと、蓄電デバイスへの必要性、需要がさらに高まっていくものと期待される。今後 大きな波となっていく蓄電デバイス変革に応えていくために、鉛蓄電池およびリチウムイオン蓄電池を中心に、当社保有技術 をグローバル基盤技術として整理し概説する。

1 緒 言

地球温暖化が深刻化していく中,2015年12月に温室効果ガス(CO₂など)の主要排出国が参加した気候変動枠組条約第21回締 約国会議(COP21)が開催された。この会議では、いわゆるパリ協定として、平均気温の上昇を2℃より十分に下方に抑制する ことをめざす世界共通の長期目標(2℃目標)の設定などを規定した国際的枠組みを採択した。

この温暖化対策では、化石エネルギー消費を起源とする温室効果ガスの排出量の確実な削減が求められている。供給された ー次エネルギーが、電気や石油製品などに変換される発電、石油精製工程での転換ロスを生じたのち、電力、熱、石油製品(ガ ソリン、灯油など)などの形態が異なる二次エネルギーとして最終消費者に供給される。この二次エネルギーは、家庭、産業部 門、輸送部門において、電力エネルギーおよび車両駆動エネルギー(ガソリンなど)として最終エネルギーとして消費される。 2014年度の日本では、一次化石エネルギー供給を100%とすると、電力エネルギーと車輌駆動エネルギーが転換ロスも含めた 最終エネルギー消費の約65%を占めている。これが、温室効果ガスの最大の発生源となっている。

各国が温暖化対策を力強く推進していくためには、化石エネルギーの利用比率を最小化したエネルギー需給見通し(エネル ギーミックス)をめざすエネルギー革新戦略の策定が重要であり,徹底した省エネルギーの実行,温室効果ガス排出のない風力, 太陽光などの再生可能エネルギーの活用最大化,発電および輸送分野における新たなエネルギーシステムの構築が必須となる。

エネルギー転換政策 "Energiewende" へ取り組む環境対策先進国ドイツでは、原子力発電所や化石燃料発電所等の従来型 発電から再生可能エネルギー源への置き換えを急速に進めている。一方、再生エネルギーは、天候に大きく電力供給量が変動 する不安定な分散電源であり、導入量の増加に伴い、電力系統の不安定化が懸念され、世界共通の課題である。この解決策と して、蓄電池を活用した新たなエネルギーシステムの開発・実用化が期待されている。当社では、鉛蓄電池、リチウムイオン 蓄電池ほかを組み合わせたハイブリッド蓄電システムの活用を提案し、NEDO(新エネルギー・産業技術総合開発機構)の再生 可能エネルギー導入に関する日欧協働による実証プロジェクトに参画し、ドイツおよびポーランドで新たなエネルギーシステ ムの構築を進めている。

また、もう一つの主要な温室効果ガスの排出源は、輸送分野の車両駆動エネルギーとなるガソリン、軽油などである。この 自動車分野では、ガソリン車やディーゼル車などの内燃機関車からハイブリッド車、プラグインハイブリッド車、さらに電気 自動車(xEV車)へのシフトが急速に進み始めている。米国カリフォルニア州は、CO₂などを出さない環境対応車の生産を自動 車メーカーに課すゼロエミッションビークル(ZEV)規制をいち早く制定し、環境対策を強化している。また中国では、新エ ネルギー車(NEV)規制法を制定し、2018年度から施行していく。乗用車製造企業は、規定された企業平均燃費規制値(CAFC) を2018年から毎年クリアしなければならない。この規制値を達成するにはxEV車の生産比率を継続的に高めていく必要があ り、世界中の自動車メーカーが電動化を強力に推進し始めている。また、自動運転やIoT技術の導入も本格化し、車載電源へ の高容量化、待機電力の増大化、鉛蓄電池からリチウムイオン蓄電池への転換など車載蓄電池の変革も同時に進みつつある。欧州、 日本でも環境対応車の普及拡大に向けた規制制定の動きがあり、特に欧州ではマイクロハイブリッド車の拡大をめざしている。 当社では、この欧州を中心に自動車および産業用蓄電池で高い市場シェアを有する合弁会社FIAMM Energy Technology(以 下、FET社)を設立した。FET社はイタリアに本社を置き、欧州自動車メーカーと新たな車載蓄電池の実用化に取り組んでいる。

蓄電デバイスは、電気エネルギーの貯蔵,空間および時間の移動を実現する最適のデバイスである。当社は、蓄電池および 蓄電システムに関する長年の製品開発を通し、多くの共通基盤技術、知見を蓄積してきた。電力および自動車などの基幹産業 における先進システムの変革が進行していくと、蓄電デバイスへの必要性、需要がさらに高まっていくものと期待している。

今後大きな波となっていく蓄電デバイス変革に応えていくために,鉛蓄電池およびリチウムイオン蓄電池を中心に,当社保 有技術をグローバル基盤技術として整理し概説する。

| 2 | 鉛蓄電池の活物質技術

鉛蓄電池の充放電反応を支配する活物質は、要求される特性に応じて、随時改良されてきた。近年の自動車の燃費改善技術 として広く利用されているアイドリングストップ車向けとして、当社では負極活物質に関する技術を蓄積してきた^{1.2.3)}。ここ で、アイドリングストップ車向け鉛蓄電池に要求される電池特性について、簡単にまとめる。図1はアイドリングストップ車 の走行モデルを示す。エンジン始動後、走行中の鉛蓄電池は充電状態にあるが、車両停止時にはエンジンが停止し、必要な電 力は鉛蓄電池から供給されるため、鉛蓄電池は放電状態にある。このモデル図から、鉛蓄電池には、エンジン停止中に使用し た電力を短時間で回復できること、頻繁な充放電の繰り返しに対する耐久性が高いことが求められる。

図2は、当社のアイドリングストップ車向け鉛蓄電池の各世代の技術的特長を示している。第1世代では、負極活物質に、 当時主流であった天然リグニンに変わり、有機物中の官能基を最適化した合成リグニンを開発し、採用した。これにより、充 電受け入れ性を1.9倍まで高めることができた¹⁾。第2世代では、耐久性を高めるために、負極活物質に添加しているカーボン

材料の見直しを行った²⁰。カーボンは活物質に取り込 まれ,生成する硫酸鉛の安定性を阻害し,硫酸鉛の蓄 積を防止すると言われている。従来,カーボンにはア セチレンブラックが使用されているが,その効果の維 持について調べた。図3²⁰は種々のカーボン材料と硫 酸鉛の蓄積の防止効果の維持を示す。従来のアセチレ ンブラックよりもリン片状黒鉛の効果維持が長いこと を見出した。第2世代までで,従来の鉛蓄電池と比べ, 充電受け入れ性で2.0倍,耐久性で3.5倍まで高める技 術を見出した。

電 充 加 て 加 て か て い ンジン ン ジンン	ブレーキ回生(短時間大電流充電) 電流充電) 時間 発電OFF エンジン 信号待ち 再始動	 ② 走行中の発電OFF(充電制御) →バッテリーからの放電 ③ 信号待ちエンジン停止 エアコン,ライト,カーナビを稼働 →バッテリーからの放電 ④ エンジン再始動 →バッテリーからの放電 ⑤ ブレーキエネルギーを回生利用
始動		→バッテリーへの急速充電

図1 アイドリングストップ車両における充放電電流モデル Figure 1 Charge and Discharge model of the battery for Idling stop and start system

	0 14							
5秒間充電容量(Ah)	0.14				試験温度:25℃ 充電電圧:2.33 V(100 Amax)			
	0.10		-		500.9	0%		
	0.08	-				新カー	-ボン	
	0.06	-	従来カー (第 1 世(·ボン 代品)		(開発,	品 M-42_])
	0.04	_						
	0.02	_						
	0	0 100	0 2000) 3000 # < /2	4000 ·····教(回)	5000	6000	7000
		図 3	カーボン	ッキン ~種類と充	か数(回)	の関係		

Figure 3 Change in charge capacity for 5 seconds

開発技術	第1世代	第2世代	第3世代
正極活物質		高耐久活物質 の開発	←
負極活物質	新規合成リグ ニンの開発	新規カーボン 材料の開発	←
セパレータ			新規セパレー タの開発

図 2 アイドリングストップ車用電池の技術変遷 Figure 2 Techniques of the battery for Idling stop and start system 一方,産業用鉛蓄電池の代表的な活物質技術について示す。当社 は、風力発電用変動緩和抑制用鉛蓄電池として、"LLシリーズ"を 開発してきた^{4,5,6}。変動緩和抑制用鉛蓄電池に求められる特性とし ては、長周期の変動を吸収する、つまり比較的時間の長い領域の充 電特性の向上と耐久性の向上である。充電性能の向上および耐久性 向上の両方について、負極活物質の添加剤を検討した。図4は検討 の一例である。これらの結果から、負極活物質添加剤の最適化を達 成した。

Figure 4 Comparison of amount of lead sulfate in negative active material using different carbon

3 鉛蓄電池の設計技術

鉛蓄電池の集電体は,溶解した鉛合金を金型に流し込み鋳造される鋳造格子と鉛合金を圧延したシートをパンチング加工す るパンチング格子とエキスパンド加工するエキスパンド格子が主に使用されている。集電格子に求められる機能は,活物質の 電気化学反応で発生した電気を集電部まで効率的に導くための電気的な集電機能である。このため,電流密度に合わせて格子 の太さや格子位置を適切に設定することで格子設計の最適化が可能となる。図5は格子の抵抗分布をシミュレーションしたも のである¹¹。これは,ISS(Idling Stop System:アイドリングストップ)用電池の格子設計に用いたシミュレーション結果である。 この結果からは,従来格子は下部の電圧降下が1.2 V程度あるのに対し開発品は0.8 V程度であり,従来品に比べて約25%の低 抵抗化を達成したものである。一方,鉛合金製の格子は,使用中に徐々に腐食され,腐食にともなう変形を生じ,内部短絡の

原因になることがある。そのため,腐食による格子変形を最小化す る格子設計が必要である^{7.8)}。図6は電力貯蔵用鉛蓄電池の変形解 析結果である⁷⁾。従来品は4500サイクル時の変形が大きく,変形が 故障モードになっている。一方,開発品は従来品に比べ,約35%の 変形量低減が予測された。これらの結果は,実使用時の変形量との 相関も確認でき,格子設計におけるシミュレーションの妥当性も確 認できている。従来,格子の設計は,設計-試作-実験-見直しの 繰り返しにより決定されてきたが,シミュレーションの活用により, 開発期間の短縮,開発コストの削減だけでなく,製品信頼性の向上 にも寄与している。

図 5 集電格子の抵抗解析 Figure 5 Results of grid resistance simulation

図6 電力貯蔵用鉛蓄電池の変形解析

Figure 6 Typical simulation result of corrosion deformation in LL type VRLA batteries

| 4 | 鉛蓄電池の状態検知技術

鉛蓄電池は,電圧特性が平坦なため,充電状態や劣化度などの電池状態の判定が難しい電池である。電池状態を判定することは,鉛蓄電池の最適運用や鉛蓄電池を使用したシステムの電源マネージメントをする上で重要である。使用中の電池から計測できる項目は,電圧,電流,温度に限られるため,少ない情報から電池状態を推定する技術開発をすすめてきた。ここでは,自動車用途^{9~13}および産業用途^{14,15}での推定技術を紹介する。

自動車用特にアイドリングストップ車においては、アイドリングストップからのエンジン始動の可否、アイドリングストップし 続けても大丈夫か否か、鉛蓄電池の寿命が近いか否か、の判定が重要である。それぞれ、アイドリングストップ可否判定、残

容量推定,要交換判定と呼ぶ。図7はエンジン始動時の電圧と電池残容 量の関係を示す⁹⁾。この関係から,エンジン始動に必要な最低電圧をあ らかじめ与えておくことで,アイドリングストップ可否判定が可能であ る。残容量は,バッテリ内部抵抗から求めた残容量と回路電圧から求め た残容量とをカルマンフィルタ処理することによって走行前の残容量を 決定し,走行中は電流積算から求めた電気量を加算した。図8はアイド リングストップ走行時の推定結果である⁹⁾。試験後に測定した残容量の 実測値と推定値では誤差が4%であった。鉛蓄電池は使用状況によって さまざまな劣化状態になるため,種々の電池で推定誤差を求めた。図9 に推定誤差を示している⁹⁾が,いずれの劣化状態でも±10%以内であり, 異なる使用状況下での推定誤差としては非常に小さいと言える。

図7 エンジン始動時の電圧と残容量の関係 Figure 7 Relationship between SOC and voltage at engine start

次に産業用鉛蓄電池の劣化解析について開発例を示す。図10は産業用鉛蓄電池の主要な劣化モードを示す¹⁵⁾。これらの劣化 は、オーミックな抵抗成分および反応抵抗成分の上昇として現れる。オーミック抵抗成分は電気化学インピーダンス測定にお いて、原理的に高周波領域に影響が現れる成分であり、反応抵抗は低周波領域に影響が現れる。図11に種々の電池の周波数 と抵抗の関係を示す¹⁵。このように種々に劣化させた電池の解析を行い、電池抵抗測定に使用する周波数を、高周波領域、低 周波領域、その中間の周波数領域から複数選択する方法を開発した。これらの抵抗値と電池の放電挙動には高い相関性が見ら れ、鉛蓄電池の劣化解析が可能となった。

Figure 10 Lifetime factor of VRLA battery

5 リチウムイオン蓄電池の大容量化技術と電池システム技術

当社のリチウムイオン蓄電池開発は大容量化と高安全化の両立をめざしてきた16-19。大容量化のメリットは、大規模な蓄電 システムを比較的少ないセル数で構成できることである。さらに当社のリチウムイオン蓄電池は大容量セルでありながら3C 連続放電を可能としており、30分以内の短時間放電にも対応できる。図12に当社"CH75電池"の概要を示す¹⁹⁾。高安全化に 対しては3つの特長を有している。1つ目は円筒形の構造とすることで、極板にかかる圧力を均一化している点である。これに より、活物質の膨張収縮による局部的な劣化を抑制し、長期にわたり活物質構造を維持し、電池の信頼性を向上させている。 2つ目は、SUS缶の採用である。ラミネートタイプと比べ、外部衝撃や振動に強く、定置以外の移動体用途における信頼性も 高い構造となっている。3つ目は、熱安定性に優れたマンガン系正極を採用することで、熱暴走の可能性を低減している。こ れらの技術に加え、パック搭載時の温度環境シミュレーションや最適クーリングシステムとの組み合わせにより、大容量化と 高安全化を両立させている。

*1 期待寿命:当社推奨使用条件下での推定寿命

図12 CH75電池の概要

Figure 12 Specifications, appearance and safety technologies of lithium-ion battery CH75 cell 図13に "CH75"を使用した電池システム例を示す²⁰⁾。各電池パックには全セルの電圧を監視するセルコントローラを搭載 し、充放電の繰り返しによる各セルの電圧ばらつきを検知し、自動的に同じ電圧に補正する機能を備えている。1台の電池盤 には24台の電池パックが直列に接続されている。各電池パックのセルコントローラを監視するバッテリマネジメントユニット を備え、各種異常・故障の検知、電池パック間のばらつきの調整を行っている。バッテリマネジメントユニットには万が一電 池盤に故障が発生したときに、該当する電池盤を切り離した状態で運転を継続する機能も有している。

図13 CH75を使用した蓄電システムブロック図 Figure 13 Block diagram of the lithium-ion battery system

6 電池分析技術

電池活物質の化学反応の多くは、固体表面と電解液の接触面での反応であり、固体表面の性質の影響を受ける。活物質には 導電材、バインダが含まれ、活物質の構造は3次元構造であり、無機-有機材料が混在した、複雑な状況にある。これらを可 視化し、反応への寄与を推測することは電池の高性能化にとって非常に有益な情報を得ることができる。図14は、最新のラ マン分光装置を用い、バインダの分散状態の差異を画像で確認し、電極抵抗値がバインダの占有率の影響を受けることを可視 化したものである²¹⁾。これにより、バインダの電極活物質内での分布状態を確認することができ、分散性や電極材料の最適化 が図れ、電池特性向上に貢献できる。

鉛蓄電池は150年以上の歴史をもつ電池であるが,活物質反応や硫酸鉛の析出形態に及ぼすカーボン材料の影響などいまだ 解明されているとは言えない。当社では,分析技術の進展とともに,高度な分析技術を鉛蓄電池に適用し,添加剤の違いによ る充電反応の解析,腐食生成物の構造解析など,その現象解明に取り組んできた。ここでは,硫酸鉛が連続的に析出し内部短 絡を引き起こす浸透短絡を3次元で可視化した技術を紹介する。図15は浸透短絡時に生成する硫酸鉛のX線CTによる3次元 イメージを示す²²⁾。従来は,セパレータ断面を研磨し,SEMを用いて観察していたため,立体的な解析が困難であった。X線 CTによる3次元解析では,硫酸鉛の形状がリン片状であること,従来観察できなかった微細な析出物が存在することが明ら かとなった。従来の分析技術では明らかにすることは困難であったこれらの現象をさらに調査することで,電池特性の向上が 図れることが期待される。

図15 鉛蓄電池のセパレータ内硫酸鉛観察 Figure 15 Cross-sectional SEM image and three dimensional structure analysis of separators after hydration short by X-ray CT

7 まとめ

以上,当社が培ってきた電池技術の一例を紹介した。当社の電池事業はHitachi Chemical Energy Technology Co., Ltd.の子 会社化に続き,FIAMM Energy Technology S.p.A.の設立,Thai Storage Battery Public Company Limitedの買収などグロー バル市場での競争力強化を推し進めている。ここに示した電池技術を幅広く展開するとともに,新しい技術開発を推し進める 所存である。

【参考文献】

- 1) 和田圭一他:ISS車両専用バッテリー,新神戸テクニカルレポー
 ト, No.20, P17(2010)
- 2) 大津公二他:軽自動車向けISS車用バッテリー,新神戸テク ニカルレポート, No.22, P15(2012)
- 3) 荒城真吾他: ISS車用高耐久高充電受入性鉛電池, 日立化成 テクニカルレポート, No.57, P18(2014)
- 4) 高林久顕他:電力貯蔵用制御弁式鉛蓄電池の開発,新神戸テ クニカルレポート, No.11, P35(2001)
- 5) 高林久顕他: サイクル長寿命電力貯蔵制御弁式鉛蓄電池LL-S 形の開発, 新神戸テクニカルレポート, No.15, P31(2005)
- 佐野伸一他:風力発電の出力変動緩和用制御弁式据置鉛蓄 電池LL1500-W形,新神戸テクニカルレポート, No.21, P15 (2011)
- (7) 向谷一郎他:鉛蓄電池正極格子の腐食変形予測による長寿 命設計とMU,LL形電池への適用,新神戸テクニカルレポート, No.15, P23(2005)
- 8) 向谷一郎他:据置鉛蓄電池開発におけるCAE解析,新神戸 テクニカルレポート, No.21, P21(2011)
- 9)前田謙一他:鉛バッテリ用状態検知センサ、新神戸テクニカ ルレポート、No.21、P27(2011)
- 山田恵造他:自動車用AIバッテリCYBOXの開発,新神戸テ クニカルレポート, No.15, P18(2005)

- 11) 大越哲郎他:自動車用次期AIバッテリの開発, No.16, P22 (2006)
- 12) 大越哲郎他:鉛電池状態検知技術の開発,新神戸テクニカル レポート, No14, P7(2004)
- 13) 大越哲郎他:状態検知機能付自動車用バッテリの開発,新神 戸テクニカルレポート, No19, P17(2009)
- 14) 郡司圭子他:風力発電出力変動緩和用鉛電池の寿命・劣化 予測モデル,新神戸テクニカルレポート, No.22, P19(2012)
- 15) 水杉真也他:産業用鉛蓄電池の無線による常時状態監視シス テム,新神戸テクニカルレポート,No23,P15(2013)
- 16) 春名博史他:電力貯蔵用大容量リチウムイオン二次電池,新 神戸テクニカルレポート, No.21, P11(2011)
- 17) 林晃司他:通信バックアップ用リチウムイオン電池の要素技術,新神戸テクニカルレポート, No.20, P3(2010)
- 18) 吉田誠人他: リチウムイオン電池, 日立化成テクニカルレポー ト, No.55, P6(2013)
- 19) 児玉弘則:蓄電デバイス&システム,日立化成テクニカルレポート,No.57,P6(2014)
- 20) 廣田昇一他:スマートグリッド向けリチウムイオン電池システム,日立化成テクニカルレポート,No.57,P16(2014)
- 21) 住谷圭二他:リチウムイオン電池および関連材料の高度機能 解析,日立化成テクニカルレポート,No.57,P22(2014)
- 22) 平野博紀他: 鉛電池の高度解析技術, 日立化成テクニカルレポート, No.58, P16(2015)